
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

GPU Computing with fragment shaders

”Classic GPGPU”

Use graphics shaders for general-purpose computing.

Adapt your data and computing to fit the graphics pipeline.

Hot until CUDA arrived, now overshadowed by CUDA and
OpenCL.

46(97)

46(97)

Information Coding / Computer Graphics, ISY, LiTH

Why is classic GPGPU interesting?
• Highly suited to all problems dealing with images,

computer vision, image coding etc

• Parallelization ”comes natural”, you can’t avoid it and
good speedups are likely. Fewer pitfalls.

• Highly optimized (for graphics performance).

• Compatibility is vastly superior!

• Very much easier to install!

47(97)47(97)

Information Coding / Computer Graphics, ISY, LiTH

So what is not so good?
• Must map data to image data

• Computing controlled by pixels in output image

• No shared memory access

However: OpenGL 4 adds much flexibility, moves closer to
CUDA and (especially) OpenCL. Writable textures, atomics,

synchronization...

48(97)48(97)

Information Coding / Computer Graphics, ISY, LiTH

The OpenGL pipeline

Vertex
processorVertex coordinates

and normal vectors
Primitive
assembly

Primitives,
connectivity

Triangles etc

Raster
conversion

Clip, cull

Fragment
processor Pixel coord

Fragment
operations

Frame buffer
operations

+color, texture

Texture

Transformed
coordinates

49(97)49(97)

Information Coding / Computer Graphics, ISY, LiTH

Vertex
processor

Vertex coordinates
and normal vectors

Transformed
coordinates

Primitive
assembly

Primitives,
connectivity

Triangles etc

Raster
conversion

Clip, cull

Fragment
processor Pixel coord

Fragment
operations

Frame buffer
operations

+color, texture

Texture

Out of these, three are
programmable!

50(97)50(97)

Information Coding / Computer Graphics, ISY, LiTH

Vertex
processor

Vertex coordinates
and normal vectors

Transformed
coordinates

Primitive
assembly

Primitives,
connectivity

Triangles etc

Raster
conversion

Clip, cull

Fragment
processor Pixel coord

Fragment
operations

Frame buffer
operations

+color, texture

Texture

But only one creates easily
accessible output data!

51(97)51(97)

Information Coding / Computer Graphics, ISY, LiTH

Model

World-to-view

coordinates
World

coordinates
View

coordinates
Projected
coordinates

Device
coordinates

TwRwRvTvPSdTd

transformation
Model-to-world
transformationProjection

transformation
Device
transformation

Typical OpenGL situation
• Complex geometry

• Many transformations
• Perspective projection

• Lighting and material calculations
for the surfaces

• Many texture accesses for interpolation and
supersampling

52(97)52(97)

Information Coding / Computer Graphics, ISY, LiTH

Typical GPU Computing with fragment shaders
(also used in filtering in graphics):

• Render to a single rectangle covering the entire
image buffer.

• Use FBOs for effective feedback
• Floating-point buffers

• Ping-ponging, many pass with different shaders

Render image 1:1 Output

shader

53(97)53(97)

Information Coding / Computer Graphics, ISY, LiTH

Computing model
• Array of input data = texture

• Array of output data = resulting frame buffer
• Computation kernel = shader

• Computation = rendering
• Feedback = switch between FBO’s or copy

frame buffer to texture

54(97)54(97)

Information Coding / Computer Graphics, ISY, LiTH

Computation = rendering
Typical situation:

• Texture and frame buffer same size
• Render the polygon over the entire frame buffer

Texture Frame buffer

shader

55(97)55(97)

Information Coding / Computer Graphics, ISY, LiTH

Kernel = shader
Shaders are read and compiled to one or more program objects. A GPGPU application

can use several shaders in conjunction!

Activate desired shader as needed using glUseProgram();

The fragment shader performs the computation:

uniform sampler2D texUnit;
in vec2 texCoord;
out vec4 fragColor;

void main(void)
{
 vec4 texVal = texture(texUnit, texCoord);
 fragColor = sqrt(texVal);
}

56(97)56(97)

Information Coding / Computer Graphics, ISY, LiTH

Render a single polygon

• Texture and frame buffer same size
• Render polygon over entire frame buffer

GLfloat quadVertices[] = { -1.0f, -1.0f, 0.0f,

-1.0f, 1.0f, 0.0f,

1.0f, 1.0f, 0.0f,

1.0f, -1.0f, 0.0f};

GLuint quadIndices[] = {0, 1, 2, 0, 2, 3};

(1, 1)

(-1, -1)

57(97)57(97)

Information Coding / Computer Graphics, ISY, LiTH

Program structure:
• Set up OpenGL

• Upload data to texture
• Load shaders from file and compile

• Draw quad on screen (of off screen) using OpenGL
• Data is computed by the fragment shader, per pixel

• Output can be downloaded as image data

Examples…

58(97)58(97)

Information Coding / Computer Graphics, ISY, LiTH

Feedback
We must be able to pass output from one operation

as input of the next!

Solution: Render to texture, ”framebuffer objects”,
create a texture used as input for a later stage

59(97)59(97)

Information Coding / Computer Graphics, ISY, LiTH

“Ping-pong”-ing

Using “framebuffer objects” the
output image can be a texture

Input data is a number of textures.
Limited by the number of texturing
units available.

The kernel reads from one or more texture, writes into the frame buffer

60(97)60(97)

Information Coding / Computer Graphics, ISY, LiTH

Filtering, convolution
Common problem, highly suited for shaders.

All kinds of linear filters:

• Low-pass filtering (smoothing)
• Gradient, embossing

Must be done by gather operations, not scatter!

61(97)61(97)

Information Coding / Computer Graphics, ISY, LiTH

Example: high pass filter

1 -4 1

More graphics
heritage: Index
data by steps of
1/size, not 1!

1

1#version 150

out vec4 outColor;

in vec2 texCoord;
uniform sampler2D tex;

void main(void)
{
 float h, v;
 const float offset = 1.0/512.0;

 vec4 c = texture(tex, texCoord);
 vec4 r = texture(tex, texCoord + vec2(offset, 0.0));
 vec4 l = texture(tex, texCoord + vec2(-offset, 0.0));
 vec4 u = texture(tex, texCoord + vec2(0.0, offset));
 vec4 d = texture(tex, texCoord + vec2(0.0,-offset));
 outColor = (-4.0*c + r + l + u + d);
}

62(97)62(97)

Information Coding / Computer Graphics, ISY, LiTH

Scatter vs gather

Shaders give output for one pixel -> gather only!

Scatter Gather

63(97)63(97)

Information Coding / Computer Graphics, ISY, LiTH

How about CUDA/OpenCL?

Scatter vs gather: You usually prefer gather. Less
synchronization! (Remember, synchronization comes for a cost!)

Separable filters: Optimization just as valid for all techniques!
(But particularly common in shaders, for images.)

64(97)64(97)

Information Coding / Computer Graphics, ISY, LiTH

Reduction, sorting
Same methods as I have mentioned before.

Bitonic sort suitable.

Reduction by tree structure.

In the past: Fixed output per thread. This is getting less fixed.

• Write to texture possible.
• Synchronization supported.

65(97)65(97)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions:
• Shader-based GPGPU is not dead, it is just not hyped

Superior compatibility and ease of installation makes it highly
interesting for the forseeable future. Especially suitable for all

image-related problems.

• How to do GPGPU with shaders

FBOs, Ping-ponging, algorithms, special considerations.

But stay tuned for Compute Shaders to change things...

66(97)66(97)

