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GPU Computing with fragment shaders

”Classic GPGPU”

Use graphics shaders for general-purpose computing.

Adapt your data and computing to fit the graphics pipeline.

Hot until CUDA arrived, now overshadowed by CUDA and 
OpenCL.
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Why is classic GPGPU interesting?
• Highly suited to all problems dealing with images, 

computer vision, image coding etc

• Parallelization ”comes natural”, you can’t avoid it and 
good speedups are likely. Fewer pitfalls.

• Highly optimized (for graphics performance).

• Compatibility is vastly superior!

• Very much easier to install!
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So what is not so good?
• Must map data to image data

• Computing controlled by pixels in output image

• No shared memory access

However: OpenGL 4 adds much flexibility, moves closer to 
CUDA and (especially) OpenCL. Writable textures, atomics, 

synchronization...
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The OpenGL pipeline
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Out of these, three are 
programmable!
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But only one creates easily 
accessible output data!
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Model
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Typical OpenGL situation
• Complex geometry

• Many transformations
• Perspective projection

• Lighting and material calculations
for the surfaces

• Many texture accesses for interpolation and 
supersampling

52(97)52(97)



Information Coding / Computer Graphics, ISY, LiTH

Typical GPU Computing with fragment shaders
(also used in filtering in graphics):

• Render to a single rectangle covering the entire 
image buffer.

• Use FBOs for effective feedback
• Floating-point buffers

• Ping-ponging, many pass with different shaders

Render image 1:1 Output

shader
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Computing model
• Array of input data = texture

• Array of output data = resulting frame buffer
• Computation kernel = shader

• Computation = rendering
• Feedback = switch between FBO’s or copy 

frame buffer to texture
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Computation = rendering
Typical situation:

• Texture and frame buffer same size
• Render the polygon over the entire frame buffer

Texture Frame buffer

shader
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Kernel = shader
Shaders are read and compiled to one or more  program objects. A GPGPU application 

can use several shaders in conjunction!

Activate desired shader as needed using glUseProgram();

The fragment shader performs the computation:

uniform sampler2D texUnit;
in vec2 texCoord;
out vec4 fragColor;

void main(void)
{
   vec4 texVal  = texture(texUnit, texCoord);
   fragColor = sqrt(texVal);
}
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Render a single polygon

• Texture and frame buffer same size
• Render polygon over entire frame buffer

GLfloat quadVertices[] = { -1.0f, -1.0f, 0.0f,

-1.0f, 1.0f, 0.0f,

1.0f, 1.0f, 0.0f,

1.0f, -1.0f, 0.0f};

GLuint quadIndices[] = {0, 1, 2, 0, 2, 3};

(1, 1)

(-1, -1)
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Program structure:
• Set up OpenGL

• Upload data to texture
• Load shaders from file and compile

• Draw quad on screen (of off screen) using OpenGL
• Data is computed by the fragment shader, per pixel

• Output can be downloaded as image data

Examples…
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Feedback
We must be able to pass output from one operation 

as input of the next!

Solution: Render to texture, ”framebuffer objects”, 
create a texture used as input for a later stage
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“Ping-pong”-ing

Using “framebuffer objects” the
output image can be a texture

Input data is a number of textures.
Limited by the number of texturing
units available.

The kernel reads from one or more texture, writes into the frame buffer
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Filtering, convolution
Common problem, highly suited for shaders.

All kinds of linear filters:

• Low-pass filtering (smoothing)
• Gradient, embossing

Must be done by gather operations, not scatter!
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Example: high pass filter

1 -4 1

More graphics
heritage: Index
data by steps of
1/size, not 1!

1

1#version 150

out vec4 outColor;

in vec2 texCoord;
uniform sampler2D tex;

void main(void)
{
   float h, v;
   const float offset = 1.0/512.0;

   vec4 c  = texture(tex, texCoord);
   vec4 r  = texture(tex, texCoord + vec2( offset,  0.0));
   vec4 l  = texture(tex, texCoord + vec2(-offset,  0.0));
   vec4 u  = texture(tex, texCoord + vec2(    0.0, offset));
   vec4 d  = texture(tex, texCoord + vec2(    0.0,-offset));
   outColor = (-4.0*c + r + l + u + d);
}
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Scatter vs gather

Shaders give output for one pixel -> gather only!

Scatter Gather
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How about CUDA/OpenCL?

Scatter vs gather: You usually prefer gather. Less 
synchronization! (Remember, synchronization comes for a cost!)

Separable filters: Optimization just as valid for all techniques! 
(But particularly common in shaders, for images.)
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Reduction, sorting
Same methods as I have mentioned before.

Bitonic sort suitable.

Reduction by tree structure.

In the past: Fixed output per thread. This is getting less fixed.

• Write to texture possible.
• Synchronization supported.
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Conclusions:
• Shader-based GPGPU is not dead, it is just not hyped

Superior compatibility and ease of installation makes it highly 
interesting for the forseeable future. Especially suitable for all 

image-related problems.

• How to do GPGPU with shaders

FBOs, Ping-ponging, algorithms, special considerations.

But stay tuned for Compute Shaders to change things...
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